Multiplex methods provide effective integration of multi-omic data in genome-scale models
نویسندگان
چکیده
منابع مشابه
Editorial: Multi-omic data integration
As researchers involved in molecular biology, we are witnessing tremendous paradigm changes in a time frame that becomes shorter and shorter. The epoch-making notion, originally put forward by the central dogma of biology (Crick, 1970), that there is a unidirectional process and a privileged level (genetic) of causality at which biological functions are determined, has already long and strongly...
متن کاملGenome scale models of yeast: towards standardized evaluation and consistent omic integration.
Genome scale models (GEMs) have enabled remarkable advances in systems biology, acting as functional databases of metabolism, and as scaffolds for the contextualization of high-throughput data. In the case of Saccharomyces cerevisiae (budding yeast), several GEMs have been published and are currently used for metabolic engineering and elucidating biological interactions. Here we review the hist...
متن کاملMethods for integration of transcriptomic data in genome-scale metabolic models
Several computational methods have been developed that integrate transcriptomic data with genome-scale metabolic reconstructions to infer condition-specific system-wide intracellular metabolic flux distributions. In this mini-review, we describe each of these methods published to date with categorizing them based on four different grouping criteria (requirement for multiple gene expression data...
متن کاملMulti-omic data integration enables discovery of hidden biological regularities
Rapid growth in size and complexity of biological data sets has led to the 'Big Data to Knowledge' challenge. We develop advanced data integration methods for multi-level analysis of genomic, transcriptomic, ribosomal profiling, proteomic and fluxomic data. First, we show that pairwise integration of primary omics data reveals regularities that tie cellular processes together in Escherichia col...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BMC Bioinformatics
سال: 2016
ISSN: 1471-2105
DOI: 10.1186/s12859-016-0912-1